No RL, No Simulation: Learning to Navigate without Navigating

Meera Hahn
Georgia Institute of Technology
Devendra Chaplot
Facebook AI Research
Shubham Tulsiani
Facebook AI Research

Mustafa Mukadam
Facebook AI Research
James Rehg
Georgia Institute of Technology
Abhinav Gupta
Facebook AI Research

Abstract

Most prior methods for learning navigation policies require access to simulation environments, as they need online policy interaction and rely on ground-truth maps for rewards. However, building simulators is expensive (requires manual effort for each and every scene) and creates challenges in transferring learned policies to robotic platforms in the real-world, due to the sim-to-real domain gap. In this paper, we pose a simple question: Do we really need active interaction, ground-truth maps or even reinforcement-learning (RL) in order to solve the image-goal navigation task? We propose a self-supervised approach to learn to navigate from only passive videos of roaming. Our approach, No RL, No Simulator (NRNS), is simple and scalable, yet highly effective. NRNS outperforms RL-based formulations by a significant margin. We present NRNS as a strong baseline for any future image-based navigation tasks that use RL or Simulation.

1 Introduction

In recent years, we have seen significant advances in learning-based approaches for indoor navigation [1, 2]. Impressive performance gains have been obtained for a range of tasks, from non-semantic point-goal navigation [3] to semantic tasks such as image-goal [4] and object-goal navigation [5, 6], via methods that use reinforcement learning (RL). The effectiveness of RL for these tasks can be attributed in part to the emergence of powerful new simulators such as Habitat [7], Matterport [8] and AI2Thor [9]. These simulators have helped scale learning to billions of frames by providing large-scale active interaction data and ground-truth maps for designing reward functions. But do we actually need simulation and RL to learn to navigate? Is there an alternative way to formulate the navigation problem, such that no ground-truth maps or active interaction are required? These are valuable questions to explore because learning navigation in simulation constrains the approach to a limited set of environments, since the creation of 3D assets remains costly and time-consuming.

In this paper, we propose a self-supervised approach to learning how to navigate from passive egocentric videos. Our novel method is simple and scalable (no simulator required for training), and at the same time highly effective, as it outperforms RL-based formulations by a significant margin. To introduce our approach, let us first examine the role of RL and simulation in standard navigation learning methods. In the standard RL formulation, an agent gets a reward upon reaching the goal, followed by a credit assignment stage to determine the most useful state-action pairs. But do we actually need the reinforce function for action credit assignment? Going a step further, do we even need to learn a policy explicitly? In navigation, we argue that the state space itself is highly structured via a distance function, and the structure itself could be leveraged for credit assignment. Simply put, states that help reduce the distance to the goal/destinations are better – and therefore distance could be used either as the value function or as a proxy for it. In fact, RL formulations frequently use ‘distance reduced to goal’ in reward shaping. The key property of our approach is that we learn a
Figure 1: **Left:** Using passive videos we learn to predict distances for navigation. Our distance function learns the priors of the layouts of indoor buildings to estimate distances to goal location. **Right:** Image-Goal Navigation Task [10]. Our model uses distance function to predict distances of unexplored nodes and uses greedy policy to choose shortest-distance node.

generalizable distance estimator *directly* from passive videos, and as a result we do not require any interaction. We demonstrate that an effective distance estimator can be learned directly from visual trajectories, without the need for an RL policy to map visual observations to the action space, thereby obviating the need for extensive interaction in a simulator and hand-designed rewards. However passive videos do not provide learning opportunities for obstacle avoidance since they rarely, if ever, consist of cameras bumping into walls. We forego the need for active interaction to reason about collisions as we show that failed trajectories/obstacle avoidance are only required locally and simple depth maps are sufficient to prune invalid actions/location for navigation. More broadly, our approach can be considered as closely related to model-based control, which is an alternate paradigm to RL based policy learning, with the key insight that components of the model and cost functions can be learned from passive data.

No RL, No Simulator Approach (NRNS): Our NRNS algorithm can be described as follows. During training we learn two functions from passive videos: (a) a geodesic distance estimator: given the state features and goal image, this function predicts the geodesic distance of the unexplored frontiers of the graph to the goal location. We then use the greedy policy where we select the node with least distance; (b) a target prediction model: Given the goal image and the image from the agent’s current location, this function predicts the if the goal is within sight and can be reached without collisions and the function predicts the exact location of the goal. The key is both distance model and the target prediction model can be learned from passive RGBD videos with SLAM to estimate relative poses. We believe our simple NRNS approach should act as a strong baseline for any future approaches that use RL and Simulation.

2 Related Work

Navigation in simulators. Navigating tasks largely fall into two main categories [1], ones in which a goal location is known [11, 12, 13] and limited exploration is required and ones which the goal location is not known and efficient exploration is necessary. In the second category, tasks range from finding the location of specific objects [5], rooms [14], or images [15] to the task of exploration itself [2]. The majority of current work [12, 15, 16, 3] leverages simulators [7] and extensive interaction to learn end-to-end models models for these tasks. Our work shows that semantic cues needed for exploration based navigation tasks can be learned simply from viewing video trajectories.

Navigation using passive data. Several prior works have tackled the navigation tasks when there is some passive experience available in the test environment [17, 18, 19, 20, 21, 22]. A more limited number of works train navigation policies without simulation environments [19, 22]. Unlike these works, we tackle the task of image goal navigation in unseen environments where there is no experience available to the agent in the test environments during training.

Chaplot et al. [4] and Chang et al. [23] learn navigation from passive data without having access to any experience in the test environment. Our work is closely related to Neural Topological SLAM (NTS) [4] which builds a topological map and estimates distance to the target image using a learned function. Unlike our method, NTS requires access to panoramic observations and ground-truth maps for training the distance function. This makes our method much more scalable as it can be trained with just video data with arbitrary field of view. Chang et al. [23] also use a similar approach for object goal navigation, while also incorporating video data from Youtube for learning a Q function. A key difference is that our method learns a episodic distance function, utilizing all past observations.
to estimate distances to the target image. In comparison, Chaplot et al. [4] and Chang et al. [23] use a memory-less distance function operating only on the agent’s current observation.

Map Based Navigation. There are multiple spatial representations which can be leveraged in navigation tasks. Metric maps, which maintain precise information of occupied space in an environment, are commonly used for visual navigation tasks [2, 10, 6]. Metric maps, however, suffer from issues of scalability and consistency under sensor noise. Topological maps however have recently gained more traction as navigational maps [4, 21, 18, 23] to combat these issues. Additionally, topological maps for robotic navigation draw inspiration from both animal and human psychology. The cognitive map hypothesis proposes that the brain builds coarse internal spatial representations of environments [24, 25]. Multiple works argue this internal representation relies on landmarks [26, 27] making human cognitive maps more similar to the topological maps as opposed to rigid metric maps.

Graph Neural Networks. Graph Neural Networks (GNN) are specifically used for modeling relational data in the non-euclidean space. The GCN we present for estimating distance-to-goal uses a spatial approach, which defines the convolutions based on the graph topology and local neighborhood. Specifically we employ an augmented Graph Attention Network [28] which allows for a weighted aggregation of neighboring node information. Graph Networks have been rarely utilized in the case of topological map based visual navigation. Savinov et al. [18] use a GNN for the sub-task of localizing the agent in a ground truth topological map. To our knowledge we are the first work to leverage graph networks to model navigation in a visual navigation task.

3 Image Goal Navigation using Topological Graphs

We propose No RL, No Simulator “NRNS”, a hierarchical modular approach to image-goal navigation that comprises of: a) high-level modules for maintaining a topological map and using visual and semantic reasoning to predict sub-goals, and b) heuristic low-level modules that use depth data to select low level navigation actions to reach sub-goals and determine geometrically explorable area. We first describe NRNS in detail and later show in Sec. 4 that the high-level modules can be trained without using any simulation, interaction or even ground-truth scans – that only passive video data is sufficient to learn the semantic and visual reasoning used in navigation.

3.1 Formulation and Representation

Task Definition. We tackle the task of image-goal navigation, where an agent is placed in a novel environment, and is tasked with navigating to an (unknown) goal position that is specified using an image taken from that position, shown in Fig. 2. More formally, an episode begins with an agent receiving an RGB observation \(I_G\) corresponding to the goal position. At each time step, \(t\), of the episode the agent receives a set of observations \(s_t\), and must take a navigation action \(a_t\). The agents state observations, \(s_t\), are defined as a narrow field of view RGBD, \(I_t\), and egocentric pose estimate, \(P_t\). The agent must use a policy \(\pi(a_t|s_t, I_G)\) to navigate to the goal before reaching a maximum number of actions.

Topological Map Representation. The NRNS agent maintains a topological map \((G(N, E))\) where a graph, defined by the nodes \(N\) and edges \(E\), provides a sparse representation of the environment. Concretely, a node \(n_i\) ∈ \(N\) is associated with a pose \(p_i\), defined by location and orientation. Each node \(n_i\) can either be ‘explored’ i.e. the agent has previously visited the pose and obtained a corresponding RGBD image \(I_e\), or ‘unexplored’ e.g. unvisited positions at the exploration frontier which may be visited in the future. Each edge \(e \in E\) connects a pair of adjacent nodes \(n_i\) and \(n_j\). Nodes are deemed adjacent only if a short and ‘simple’ path exists between the two nodes, as further detailed in Sec. 3.3. Each edge between adjacent nodes is then associated with the attribute \(\Delta P\) – the relative pose between the two nodes.

3.2 Global Policy via Distance Prediction

Given a representation of the environment as a topological graph, our global policy is tasked with identifying the next ‘unexplored’ node that the agent should visit, and the low-level policy is then...
responsible for executing the precise actions. Intuitively, we want our agent to select the next node as the one that minimizes the total distance to goal. The global policy’s inference can thus be reduced to predicting distances from nodes in our graph to the goal location. To this end, our approach leverages a distance prediction network \(G_D \) which operates on top of the \(G(N, E) \) to predict distance-to-goal for each unexplored node \(n_{ue} \in G \). Our global policy then simply selects the node with least total distance to goal which is defined as: distance to unexplored node from the agent’s current position, plus the predicted distance from unexplored node to the goal.

The input to the distance prediction network \(G_D \) is the current topological graph \(G(N, E) \), and \(I_G \). While the explored nodes have an image associated with them, the unexplored nodes naturally do not. To allow prediction in this setup, we use a Graph Convolutional Network (GCN) based architecture to first induce visual features for \(n_{ue} \in G \), and then predict the distance to goal using an MLP.

As illustrated in Fig. 3 the network first encodes the RGB images at each explored node \(n_i \) using a ResNet18 [29] to obtain feature vector \(h_i \in \mathbb{R}^{512} \). Each edge \(e_{i,j} \) is further represented by a feature vector \(u_{i,j} \), which is the flattened pose transformation matrix \(\phi_{ij} \in \mathbb{R}^{4 \times 4} \). The adjacency matrix \(A \), \(u \), and \(h \) are passed through a GCN comprising of two graph attention (GAT) layers [28] with intermediate non-linearities. Note that we extend the graph attention layer architecture to additionally use edge features \(u_{i,j} \) when computing attention coefficients. The predicted visual features for unexplored nodes are then finally used to compute predicted distance-to-goal \(d_i \) from each node to \(I_G \) using a simple MLP.

To select the most `promising` \(n_{ue} \) to explore, the distance from the agent’s current location \(n_t \) also needs to be accounted for. For \(n_{ue}, n_t \in G \), the ‘travel cost’ is added to \(d_i \), calculated using shortest path on \(G \) from \(n_{ue} \rightarrow n_t \). Our global policy then selects the unexplored node with the minimum total distance score as the next sub-goal.

3.3 Local Navigation and Graph Expansion

The NRNS global policy selects the sub-goal that the agent should pursue, and the precise low-level actions to reach the sub-goal are executed by a heuristic local policy. After the local policy finishes execution, the NRNS agent updates the graph to include the new observations and expands the graph with unexplored nodes at the exploration frontier.

Local Policy. The NRNS local policy, denoted as \(G_{LP} \), receives a target position, defined by distance and angle \((p_t, \phi_t) \) with respect to the agent’s current location. When \(G_D \) outputs a sub-goal node, \(p_t, \phi_t \) are calculated from the current position and passed to \(G_{LP} \). Low level navigation actions are selected and executed using a simplistic point navigation model based on the agents egocentric RGBD observations and (noisy) pose estimation. To navigate towards its sub-goal, the agent builds and maintains a local metric map using the noisy pose estimator and depth input. This effectively allows it to reach local goals and avoid obstacles. The local metric maps are discarded upon reaching the sub-goal, as they are based on a noisy pose estimator. This policy is adapted from [10] and is also used for Image-Goal Navigation in [4].

Explorable Area Prediction for Graph Expansion. We incorporate a ‘graph expansion’ step after the agent reaches a sub-goal via \(G_{LP} \) and before the agent selects a new sub-goal. First, the agent updates \(G(N, E) \) to record the current location as an explored node and store the associated RGBD observation. Second, the agent creates additional ‘unexplored’ nodes, \(n_{ue} \), adjacent to the current node, \(n_t \) based on whether the corresponding directions are deemed ‘explorable’. We use a explorable area prediction module, \(G_{EA} \), to determine which adjacent areas to the current location are geometrically explorable. This is untrained, heuristic function takes the egocentric depth image \(f_{depth} \).
Algorithm 1: NRNS Image Navigation

// initialize graph
$n_0 = (P_{t=0}, I_{t=0}); e_0 = (n_0, n_0);$
$N = (n_0); E = (e_0);$
$G = (N, E);$
// loop until reached goal or max steps
while steps taken < max steps do
 $n_{i+1}, ..., n_{i+k} = \mathcal{G}_{EA}(I_{t_{i+1}});$
 // determine valid explorable areas
 $N = n_{i+1}, ..., n_{i+k}; E = e_{i+1}, ..., e_{i+k};$
 // add unexplored nodes & edges
 $G_{LP}(\rho, \phi) = \text{argmin}(\mathcal{G}_D(G, I_{t_{i+1}}) + \text{TravelCost}(G, n_i));$
 // select sub-goal
 $I_{t_{i+1}} = \mathcal{G}_{LP}(\rho, \phi);$
 // navigate to sub-goal
 $n_{i+1} = (P_{t_{i+1}}, I_{t_{i+1}});$
 // update graph with observations
 $G_{EA}(\rho, \phi) = \mathcal{G}_T(I_{t_{i+1}}, I_{t_{i+1}});$
 // stopping criterion
 if $G_{EA}(\rho, \phi)$ then
 $\mathcal{G}_{LP}(\rho, \phi);$
 // navigate to target
 break;
 end
end

4 Learning from Passive Data

The high-level policies of NRNS that need to be learned are the Distance Network \mathcal{G}_D and Target Prediction Network \mathcal{G}_T. One of key contributions of our work is to show that these functions can be learned from passive data, eliminating the need for active interaction and ground-truth maps which help us to train our algorithm without using RL or any simulation.

Learning Distance Prediction. First, we describe how to learn the function \mathcal{G}_D. Given a topological graph (consisting of both explored and unexplored nodes) and goal image as input, \mathcal{G}_D predicts the geodesic distance between all unexplored nodes and goal image. Our training data therefore
Passive Trajectory Video \mathcal{V}_i
Stepwise Trajectory
Affinity Clustered Trajectory
Trajectory Graphs G_{vi}
ΔP
Adapted Graph for Training G_D
Explorable Area via GEA
Trajectory node

Figure 5: Example from the passive video dataset. Frames of a video trajectory \mathcal{V}_i are shown on the left. The stepwise trajectory is then turned into a trajectory graph G_{V_i} via affinity clustering \[30\] of node image and pose features. G_{V_i} is adapted to train the Global Policy G_D and target direction prediction G_{EA}. An example of an adapted G_{V_i} for training is shown on the left.

should be of triplet form: (G, I_G, D_U) where G is topological graph, I_G is goal image, and D_U is ground-truth distance of unexplored nodes (we use L2-Loss on distance function).

We sample training graphs using passive videos in a two-step process. In first step, we convert the whole video to a long topological graph. The graph contains both explored and unexplored nodes. We approximate distance to unexplored nodes using the geodesic distance on the trajectory. In the second step, we uniformly sample sub-graphs and goal locations over each video’s topological graph.

Step 1: Video to Topological Graph. In order to train with passive video data, we create a topological graph, G_{V_i}, for every video \mathcal{V}_i in the passive dataset. First, we generate a stepwise trajectory based on odometry information from each frame. We adapt this trajectory to topological graph structure using affinity clustering \[30\] on the stepwise graph via visual features and odometry information. Visual features are extracted via a Places365 \[31\] pretrained Resnet18 over each frame. Each cluster is a single node in the topological graph G_{V_i} and stepwise visual features are average pooled. The topological graphs are then expanded to have unexplored nodes. These are created using G_{EA} over the RGBD of each node centroid in G_{V_i}. Fig. 5 shows an example video and transformation between the stepwise trajectory and the topological graph.

Step 2: Sampling training datapoints. Individual data instances are via uniform sampling without replacement a random node in G_{V_i} as the goal location and a sub-graph of G_{V_i}. Trajectory distance is used as the distance label between nodes in the sub-graph and the goal image. It should be noted that the distances are partially noisy due to non-optimal long term paths of the video trajectories, making this a challenging modeling problem. In total G_D is trained over 75k training instance for Gibson and 148k instances for MP3D. For further details on training please see the Appendix.

Learning Target Direction Prediction We also want to learn G_T, which given goal image and the current node image as input, predicts whether the goal is within sight of current image. We make a simplifying assumption that any two adjacent pair of nodes (similar features and odometry) in the topological graph are positive examples and any other pair of nodes are negative examples.

5 Experiments

Image-Goal Navigation Task Setup. At the beginning of each episode the agent is placed in an unseen environment. The agent receives observations from the current state, a 3×1 odometry pose reading and RGBD image, and the RGB goal image. Observation and goal images are 120°FOV and of size 480×640. An episode is considered successful if the agent is able to reach the goal location within $1m$ within a maximum episode length of 500 steps. An episode is also evaluated by the efficiency of the navigational path from start to goal, which is quantitatively measured by Success weighted by inverse Path Length (SPL) \[11\]. Note, the narrow field of the agent in this task definition differs from past works which use panoramic views \[4\]. The decision to use a narrow field is based on our method of training only on passive data. Current video datasets of indoor trajectories such as YouTube Tours \[23\], RealEstate10k \[32\] and our NRNS dataset, do not contain panoramas.

Action Space. The agents action space contains four actions: forward by .25m, rotate left by 15°, rotate right by 15°, and stop. In our experiments we consider two cases for agent pose estimation and action transition. In the first condition the agent has access to ground truth pose and navigation actions are deterministic. In the second condition, noise is added to the pose estimation and actuation of the agent. We utilize the realistic pose and actuation noise models from \[10\] which are similarly used in \[4\]. The actuation noise adds stochastic rotational and translations transitions to the agents navigational actions.
Training Data. Our key contribution is the ability to learn navigation agents from passive data. In theory, our approach can be trained from any passive data source such as RealEstate10K [32]. However, since RL-based baselines are trained in habitat simulator and we generate our passive video dataset using the same training scenes to provide direct comparison and isolate domain gap issues.

Specifically, we create the training set of egocentric trajectory videos using the Habitat Simulator [7] train environments. A set of 2-4 points are randomly selected from the environment using uniform sampling. A video is then generated of the concatenated RGBD trajectories of the shortest path between consecutive points. Note that the complete video trajectory is not step-wise optimal nor is the end frame of the trajectory. Frames in the videos are of size 480 × 640 and have a FOV 120°and each frame is associate with a 3 x 1 odometry pose reading. In the noisy setting discussed in Sec. 5 sensor and actuation noise is injected into training trajectories. We create 19K, 43K video trajectories containing 1, 2.5 million frames respectively on the Gibson and MP3D datasets.

Test Environments. We evaluate our approach on the task of image-goal navigation. For testing, we use the habitat simulator [7]. We evaluate on the standard test-split for both the Gibson [33] and Matterport3D (MP3D) [34] datasets. For MP3D we evaluate on 18 environments and for Gibson we test on 14 environments.

Baselines. We consider a number of baselines to contextualize our Image-Goal Navigation results:

- BC w/ ResNet + GRU. Behavioral Cloning (BC) policy where \(I_t \) and \(I_G \) are encoded using a pretrained ResNet-18. Both image encodings and the previous action \(a_{t-1} \) are passed through a two layer Gated Recurrent Unit (GRU) with softmax, which outputs the next action \(a_t \).
- BC w/ ResNet + Metric Map. BC policy: \(I_t \) and \(I_G \) are encoded with a ResNet, same as the above policy. This policy keeps a metric map built from the depth images. The metric map is encoded with a linear layer. The metric map encoding and encodings of \(I_t \) and \(I_G \) are concatenated and passed into an MLP with softmax, which outputs the next navigational action \(a_t \).
- End to End RL with PPO. An Image Goal Navigation agent is trained end to end with proximal policy optimization [35] in the Habitat simulator [7] for the image-goal navigation task.

We use and adapt code for baseline algorithms from Chaplot et al. [4]. However, as our setup uses narrow-view cameras instead of panoramas, these adapted baselines perform worse compared to their previously reported performance. This difference in setup also makes direct comparison with [4] infeasible as they critically rely on panoramic views for localization. The baseline behavioral cloning policies are also trained only using the passive dataset described in Sec. 4. This makes BC baseline policies directly comparable to the NRNS model. The end to end RL policy is trained with PPO for 20 and 10 million frames for Mp3d and Gibson, respectively.

Episode Settings. To provide in-depth understanding of successes and limitations of our approach, we sub-divide test episodes into two categories: ‘straight’ and ‘curved’. In ‘straight’ episodes the ratio of shortest path geodesic-distance to euclidean-distance between the start and goal locations is < 1.2 and rotational difference between the orientation of the start position and goal image is < 45°. All other start-goal location pairs are labeled as ‘curved’ episodes. We make this distinction due to the nature of the narrow field of view of our agent which strongly effects performance on curved episodes, since the agent must learn to turn both as part of navigating and part of seeking new information about the target location. Also, while a greedy policy working on ‘straight’ episodes might be expected, a competitive performance on even ‘curved’ episodes will highlight how effective our simple model and policy is. We further subdivide each of these 2 categories into 3 difficulty sub-categories: ‘easy’, ‘medium’ and ‘hard’. Difficulty is determined by length of the shortest path between the start and goal locations. Following [4] the ‘easy’, ‘medium’ and ‘hard’ settings are (1.5 – 3m), (3 – 5m), and (5 – 10m) respectively. To generate test episodes we uniformly sample start-goal location pairs from the test scenes to create approximately 1000 episodes per setting.

5.1 Results

Tables [1][2] show the performance of our NRNS model and relevant baselines on the test splits of the Gibson and Matterport datasets.

NRNS outperforms baselines. Our NRNS algorithm significantly outperforms the BC and end-to-end RL policies in terms of Success and SPL @ 1m on both datasets – improving the best baseline, a Behavioral Cloning (BC) policy with a ResNet and GRU, across splits of Gibson by an absolute 20+% on Straight episodes and 10+% on Curved episodes. We find that a BC policy using a GRU for memory outperforms using only a metric map. We observe that an End-to-End RL policy trained in simulation performs much weaker than all baselines. The poor performance of target-driven
RL methods for image-goal navigation is unsurprising [4, 15]. This demonstrates the difficulty of learning rewards on low level actions instead of value learning on possible exploration directions as NRNS does, exacerbating the difficulty of exploration in image-goal navigation. Adding to the challenges of the task, all policies must learn the stop action. Previous works [4] have found that adding oracle stopping to a target-driven RL agent leads to large gains in performance on image-goal navigation. Limitations all approaches are seen on the ‘hard’ and ‘curved’ episode settings, showing the overall difficulty of the exploration problem and challenge of using a narrow field of view.

NRNS is robust to noise. NRNS maintains superior performance to all baselines, with the injection of sensor and actuation noise from [10] models in both the passive training data and test episodes. In fact, we find that the addition of noise leads to only an absolute drop in Success between .8-8% on Gibson [33] and 1-5% on MP3D [34]. An interesting aspect is small increase in performance (w/noise) for the hard-case. We believe this is because gt-distance for hard cases are more error prone and noise during training provides regularization.

Table 1: Comparison of our model (NRNS) with baselines on Image-Goal Navigation on Gibson [33]. We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. Noise refers to injection of sensor & actuation noise into the train videos and test episodes. * denotes using simulator.

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Model</th>
<th>Easy Succ ↑</th>
<th>SPL ↑</th>
<th>Medium Succ ↑</th>
<th>SPL ↑</th>
<th>Hard Succ ↑</th>
<th>SPL ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>PPO End-to-End RL* [35]</td>
<td>3.60</td>
<td>2.73</td>
<td>5.80</td>
<td>5.01</td>
<td>3.47</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + Metric Map</td>
<td>24.80</td>
<td>23.94</td>
<td>11.50</td>
<td>11.28</td>
<td>1.36</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + GRU</td>
<td>34.90</td>
<td>33.43</td>
<td>17.60</td>
<td>17.05</td>
<td>6.08</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td>NRNS w/ noise</td>
<td>64.10</td>
<td>55.43</td>
<td>47.90</td>
<td>39.54</td>
<td>25.19</td>
<td>18.09</td>
</tr>
<tr>
<td></td>
<td>NRNS w/out noise</td>
<td>68.00</td>
<td>61.62</td>
<td>49.10</td>
<td>44.56</td>
<td>23.82</td>
<td>18.28</td>
</tr>
<tr>
<td>Curved</td>
<td>PPO End-to-End RL* [35]</td>
<td>4.50</td>
<td>2.93</td>
<td>4.40</td>
<td>3.81</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + Metric Map</td>
<td>3.10</td>
<td>2.53</td>
<td>0.80</td>
<td>0.71</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + GRU</td>
<td>3.60</td>
<td>2.86</td>
<td>1.10</td>
<td>0.91</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>NRNS w/ noise</td>
<td>27.30</td>
<td>10.55</td>
<td>23.10</td>
<td>10.35</td>
<td>10.50</td>
<td>5.61</td>
</tr>
<tr>
<td></td>
<td>NRNS w/out noise</td>
<td>35.50</td>
<td>18.38</td>
<td>23.90</td>
<td>12.08</td>
<td>12.50</td>
<td>6.84</td>
</tr>
</tbody>
</table>

Table 2: Comparison of our model (NRNS) with baselines on Image-Goal Navigation on MP3D [34].

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Model</th>
<th>Easy Succ ↑</th>
<th>SPL ↑</th>
<th>Medium Succ ↑</th>
<th>SPL ↑</th>
<th>Hard Succ ↑</th>
<th>SPL ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>PPO End-to-End RL* [35]</td>
<td>7.50</td>
<td>4.00</td>
<td>3.50</td>
<td>1.73</td>
<td>1.00</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + Metric Map</td>
<td>25.80</td>
<td>24.82</td>
<td>11.30</td>
<td>10.65</td>
<td>3.00</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + GRU</td>
<td>30.20</td>
<td>29.57</td>
<td>12.70</td>
<td>12.48</td>
<td>4.40</td>
<td>4.34</td>
</tr>
<tr>
<td></td>
<td>NRNS w/ noise</td>
<td>63.80</td>
<td>53.12</td>
<td>36.20</td>
<td>26.92</td>
<td>24.10</td>
<td>16.93</td>
</tr>
<tr>
<td></td>
<td>NRNS w/out noise</td>
<td>64.70</td>
<td>58.23</td>
<td>39.70</td>
<td>32.74</td>
<td>22.30</td>
<td>17.33</td>
</tr>
<tr>
<td>Curved</td>
<td>PPO End-to-End RL* [35]</td>
<td>4.90</td>
<td>1.78</td>
<td>3.20</td>
<td>1.37</td>
<td>1.10</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + Metric Map</td>
<td>4.90</td>
<td>4.23</td>
<td>1.40</td>
<td>1.29</td>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>BC w/ ResNet + GRU</td>
<td>3.10</td>
<td>2.61</td>
<td>0.80</td>
<td>0.77</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>NRNS w/ noise</td>
<td>21.40</td>
<td>8.19</td>
<td>15.40</td>
<td>6.83</td>
<td>10.00</td>
<td>5.14</td>
</tr>
<tr>
<td></td>
<td>NRNS w/out noise</td>
<td>23.70</td>
<td>12.68</td>
<td>16.20</td>
<td>8.34</td>
<td>9.10</td>
<td>5.14</td>
</tr>
</tbody>
</table>

NRNS Module Ablations. Tab. 3 reports detailed ablations of NRNS on the Gibson dataset (see appendix for ablation results on MP3D). We ablate the NRNS approach by testing each module individually. In the ablation experiments, we replace the module output with the ground truth labels or numbers in order to evaluate the affect of each module on the performance of the overall approach. For simplicity, all ablations are trained and tested without sensor or actuation noise. Unsurprisingly we find that the Global Policy, G_D, has a large affect on performance (Row 4 and 8). We find that the largest affects are seen in the Hard and Curved test episodes. This is expected because as the distance to the goal increases and the path increases in complexity the search space of G_D also increases.

5.2 Training on Passive Videos in Wild

Finally, we demonstrate that our model can be learned from passive videos in the wild. Towards this end, we train our NRNS model using the RealEstate10K dataset [32] which is built from YouTube videos. This dataset has 80K clips with poses estimated via SLAM. Note that the average trajectory
Table 3: Ablations of NRNS with baselines on Image-Goal Navigation on Gibson [33]. We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. ✓ denotes a module being replaced by the ground truth labels and a ✓ denotes the NRNS module being used.

<table>
<thead>
<tr>
<th>Path Type</th>
<th>NRNS Ablation</th>
<th>Easy Succ</th>
<th>Medium Succ</th>
<th>Hard Succ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td></td>
<td>100.00 99.75</td>
<td>100.00 99.62</td>
<td>100.00 99.57</td>
</tr>
<tr>
<td>Curved</td>
<td></td>
<td>100.00 97.62</td>
<td>100.00 97.47</td>
<td>100.00 98.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.90 99.05</td>
<td>98.20 95.06</td>
<td>95.91 90.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.40 73.48</td>
<td>71.30 67.48</td>
<td>62.16 58.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.00 61.62</td>
<td>49.10 44.56</td>
<td>23.45 18.84</td>
</tr>
</tbody>
</table>

Figure 6: Example of an Image-Goal Navigation episode on MP3D. Shows the agent’s observations and internal topological graph at different time steps.

length is smaller than test time trajectories in Gibson or MP3D, and we therefore only evaluate on Easy and Medium (3m-5m) settings. Tab [4] shows the performance. Few things to note: there is drop in performance as compared to training using Gibson videos, which we attribute this to domain shift. Also, note that even after this drop, our approach trained on passive videos in wild outperforms several baselines which are trained and tested on Gibson itself. We believe this is strong indication of how effective our algorithm is without using any simulator or RL.

Table 4: Comparison of our model (NRNS) trained with different sets of passive video data, on Image-Goal Navigation on Gibson [33]. We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. Results shown are tested without sensor & actuation noise.

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Training Data</th>
<th>Model</th>
<th>Easy Succ</th>
<th>Medium Succ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>RealEstate10k [32]</td>
<td>NRNS</td>
<td>56.42 48.01</td>
<td>30.30 25.67</td>
</tr>
<tr>
<td></td>
<td>MP3D</td>
<td>NRNS</td>
<td>59.80 52.35</td>
<td>37.00 31.89</td>
</tr>
<tr>
<td></td>
<td>Gibson</td>
<td>NRNS</td>
<td>68.00 61.62</td>
<td>49.10 44.56</td>
</tr>
<tr>
<td></td>
<td>Gibson BC w/ ResNet + GRU</td>
<td>NRNS</td>
<td>30.20 29.57</td>
<td>12.70 12.48</td>
</tr>
<tr>
<td>Curved</td>
<td>RealEstate10k [32]</td>
<td>NRNS</td>
<td>21.10 15.76</td>
<td>12.90 5.57</td>
</tr>
<tr>
<td></td>
<td>MP3D</td>
<td>NRNS</td>
<td>28.26 13.59</td>
<td>11.00 5.10</td>
</tr>
<tr>
<td></td>
<td>Gibson</td>
<td>NRNS</td>
<td>35.50 18.38</td>
<td>23.90 12.08</td>
</tr>
<tr>
<td></td>
<td>Gibson BC w/ ResNet + GRU</td>
<td>NRNS</td>
<td>3.10 2.61</td>
<td>0.80 0.77</td>
</tr>
</tbody>
</table>

6 Conclusion

We presented a simple yet effective approach for learning navigation policies from just passive videos. While simulators have become fast, the diversity and scalability of environments still remains a concern. Our presented approach, NRNS, neither requires access to ground-truth maps nor online policy interaction and hence forgos need of simulator to train policy functions. We demonstrate that NRNS can outperform end-to-end RL methods and behavioral cloning policies by significant margin.
Acknowledgement

The authors would like to thank Saurabh Gupta for the discussions. We would also like to thank Gibson and RealEstate10K dataset authors for sharing the dataset for scientific research.

References

Appendix

7 Training Details

Our NRNS model is implemented in PyTorch [36]. Training the G_D model takes 20-25 epochs, requiring \sim6 hours on a single GPU. Training the G_T model takes 10-15 epochs, requiring \sim2 hours on a single GPU. Both networks use the Adam optimizer [37] with an initial learning rate of 0.0001 and apply Dropout [38] in non-convolutional layers with $p = 0.5$. G_D is trained with a batch size of 10 and G_T with a batch size of 100. We tune hyperparameters based on val-unseen split performance and use the checkpoint with the highest val-unseen split accuracy in our NRNS agent.

7.1 Distance Score Implementation

In the distance prediction network G_D, the distance label is implemented as a score between 0 to 1 which equals the inverse of the step-wise distance from each node to the goal image calculated by $1 - \max(distance, 30)/30). This clipped inverse distance score prioritizes small distances in the loss calculation. During inference time, the distance from the agent’s current location n_t to an unexplored node is added as a ‘travel cost’ to the distance prediction. The predicted distance score d_i is first converted by to a step-wise distance before the travel cost is added. The G_D network is trained with MSE loss over the predicted and ground truth distance scores. Additionally, loss is only back-propagated over the predictions on unexplored nodes.

8 Videos in the Wild

8.1 RealEstate10k Dataset Description

RealEstate10K [32] is a large video dataset of trajectories through mostly indoor scenes. 80k video clips, containing \sim10 million frames each corresponding to a provided camera pose. The poses are procured from SLAM and bundle adjustment algorithms run on the videos, and they represent the orientation and path of the camera along the trajectory. The clips are gathered from 10k YouTube videos of real estate footage. The clips are relatively short and range between 1-10 seconds [32]. While the total number of frames in the RealEstate10k clips is large, the total length of the trajectory in meters is on average shorter than the MP3D and Gibson videos. Figure 7 shows the visual difference between frames of the passive video dataset created from the simulator and those taken from YouTube videos.

8.2 Passive Video Transfer Results on MP3D

On the MP3D dataset [34], we perform similar experiments as described in Section 5.2 of the main paper. This section of the main paper only showed results of the experiments on the Gibson dataset [33].

The results of these experiments again demonstrate that NRNS can be learned from passive videos in the wild. We use the same NRNS model trained on RealEstate10K [32] dataset as in Section 5.2 and test on the MP3D test split. Additionally we test an NRNS model trained on passive videos from the Gibson train split, and report performance on MP3D test split.

We find that training on passive videos from the simulator outperforms training on the passive videos on RealEstate10K. This can be attributed a few domain gap factors. RealEstate10K videos are significantly shorter than the simulator generated passive videos, resulting in less training data for the distance prediction network. Additionally, the simulator generated passive videos contain the same actions for the agent’s rotation and translation as in the navigation task, where as RealEstate10K contains a different action space. Despite these domain transfer challenges the NRNS model trained on wild passive videos is able to outperform all other baselines.

9 NRNS Ablation Results on MP3D

We present results of the NRNS ablation experiments on MP3D [34]. The ablation experiments here are identical to those described in Section 5.1, of the main paper, for which performance is shown
Table 5: Comparison of our model (NRNS) trained with different sets of passive video data, on Image-Goal Navigation on MP3D [34]. We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. Results shown are tested without sensor & actuation noise.

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Training Data</th>
<th>Model</th>
<th>Easy Succ</th>
<th>Easy SPL</th>
<th>Medium Succ</th>
<th>Medium SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>RealEstate10k [32]</td>
<td>NRNS</td>
<td>44.58</td>
<td>39.27</td>
<td>15.81</td>
<td>10.73</td>
</tr>
<tr>
<td></td>
<td>Gibson</td>
<td>NRNS</td>
<td>59.20</td>
<td>54.12</td>
<td>22.90</td>
<td>19.34</td>
</tr>
<tr>
<td></td>
<td>MP3D</td>
<td>NRNS</td>
<td>64.70</td>
<td>58.23</td>
<td>39.70</td>
<td>32.74</td>
</tr>
<tr>
<td></td>
<td>MP3D BC w/ ResNet + GRU</td>
<td>30.20</td>
<td>29.57</td>
<td>12.70</td>
<td>12.48</td>
<td></td>
</tr>
<tr>
<td>Curved</td>
<td>RealEstate10k [32]</td>
<td>NRNS</td>
<td>9.43</td>
<td>4.96</td>
<td>5.30</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>Gibson</td>
<td>NRNS</td>
<td>12.10</td>
<td>5.66</td>
<td>8.48</td>
<td>4.92</td>
</tr>
<tr>
<td></td>
<td>MP3D</td>
<td>NRNS</td>
<td>23.70</td>
<td>12.68</td>
<td>16.20</td>
<td>8.34</td>
</tr>
<tr>
<td></td>
<td>MP3D BC w/ ResNet + GRU</td>
<td>3.10</td>
<td>2.61</td>
<td>0.80</td>
<td>0.77</td>
<td></td>
</tr>
</tbody>
</table>

in Table 3, of the main paper, on Gibson [33]. We observe similar patterns in the NRNS ablations results on MP3D as on Gibson. We again see that the Global Policy G_D has the greatest effect on performance out of all modules particularly on episodes with more difficult settings.

Table 6: Ablations of NRNS with baselines on Image-Goal Navigation on MP3D [34]. We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. \times denotes a module being replaced by the ground truth labels and a \checkmark denotes the NRNS module being used.

<table>
<thead>
<tr>
<th>Path Type</th>
<th>NRNS Ablation</th>
<th>Easy Succ</th>
<th>Easy SPL</th>
<th>Medium Succ</th>
<th>Medium SPL</th>
<th>Hard Succ</th>
<th>Hard SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>\times \times \times</td>
<td>100.00</td>
<td>100.00</td>
<td>99.80</td>
<td>99.07</td>
<td>100.00</td>
<td>99.02</td>
</tr>
<tr>
<td></td>
<td>\checkmark \times \times</td>
<td>100.00</td>
<td>100.00</td>
<td>99.00</td>
<td>96.81</td>
<td>96.10</td>
<td>92.65</td>
</tr>
<tr>
<td></td>
<td>\checkmark \checkmark \times</td>
<td>74.20</td>
<td>68.19</td>
<td>64.50</td>
<td>60.13</td>
<td>58.40</td>
<td>55.38</td>
</tr>
<tr>
<td></td>
<td>\checkmark \checkmark \checkmark</td>
<td>64.70</td>
<td>58.23</td>
<td>39.70</td>
<td>32.74</td>
<td>22.30</td>
<td>17.33</td>
</tr>
<tr>
<td>Curved</td>
<td>\times \times \times</td>
<td>100.00</td>
<td>94.08</td>
<td>99.90</td>
<td>95.39</td>
<td>100.00</td>
<td>97.00</td>
</tr>
<tr>
<td></td>
<td>\checkmark \times \times</td>
<td>100.00</td>
<td>93.06</td>
<td>97.70</td>
<td>90.22</td>
<td>91.60</td>
<td>82.87</td>
</tr>
<tr>
<td></td>
<td>\checkmark \checkmark \times</td>
<td>62.20</td>
<td>53.31</td>
<td>54.10</td>
<td>47.51</td>
<td>51.00</td>
<td>44.92</td>
</tr>
<tr>
<td></td>
<td>\checkmark \checkmark \checkmark</td>
<td>23.70</td>
<td>12.68</td>
<td>16.20</td>
<td>8.34</td>
<td>9.10</td>
<td>5.14</td>
</tr>
</tbody>
</table>
Figure 7: Comparison of the passive videos from different datasets used for training our NRNS agent. MP3D and Gibson passive video frames are images of rendered environments using the habitat simulator and therefore are similar in photo realism. RealEstate10K video frames are taken directly from a real estate tour YouTube video and therefore differ from MP3D and Gibson.