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Abstract

We address the challenging task of Localiza-
tion via Embodied Dialog (LED). Given a di-
alog from two agents, an Observer navigating
through an unknown environment and a Loca-
tor who is attempting to identify the Observer’s
location, the goal is to predict the Observer’s
final location in a map. we develop a novel
LED-Bert architecture and present an effective
pretraining strategy. We show that a graph-
based scene representation is more effective
than the top-down 2D maps used in prior work.
Our approach outperforms previous baselines.

1 Introduction

A key goal of AI is to develop embodied agents
that can effectively communicate with humans
and other agents using natural language. A ba-
sic capability for these agents is the ability to per-
ceive and navigate through an environment and re-
spond to instructions and questions about the space
they are in. The recently-introduced Where Are
You? (WAY) dataset (Hahn et al., 2020) provides
a setting for developing such a multi-modal and
multi-agent paradigm. This dataset (collected via
AMT) contains episodes of a localization scenario
in which two agents communicate via turn-taking
natural language dialog: An Observer agent moves
through an unknown environment, while a Locator
agent attempts to identify the Observer’s location
in a map.

The Observer produces descriptions such as ‘I’m
in a living room with a gray couch and blue arm-
chairs. Behind me there is a door.’ and can respond
to instructions and questions provided by the Lo-
cator: ‘If you walk straight past the seating area,
do you see a bathroom on your right?’ Via this dia-
log (and without access to the Observer’s view of
the scene), the Locator attempts to identify the Ob-
server’s location on a map (which is not available
to the Observer). This is a complex task for which a
successful localization requires accurate situational

grounding and the production of relevant questions
and instructions.

One of the benchmark tasks supported by WAY
is Localization via Embodied Dialog (LED). This
task involves the development of a machine learn-
ing model that takes the dialog and a representation
of the map as inputs, and outputs the final loca-
tion of the Observer agent. LED is a first step
towards developing a Locator agent. Two basic is-
sues are to identify an effective map representation
and deep learning architecture. The LED baseline
from (Hahn et al., 2020) uses 2D images of top
down (birds-eye view) floor maps to represent the
environment and an (x,y) location for the Observer.

This paper provides a new solution to the LED
task with two key components. First, we propose to
model the environment using the first person view
(FPV) panoramic navigation graph from Matter-
port (Anderson et al., 2018a), as an alternative to
top-down maps. Second, we introduce a novel vi-
siolinguistic transformer model, LED-Bert, which
scores the alignment between navigation graph
nodes and dialogs. LED-Bert is an adaption of
ViLBERT (Lu et al., 2019) for the LED task, and
we show that it outperforms all prior baselines. A
key challenge is the small size of the WAY dataset
(approximately 6K episodes), which makes it chal-
lenging to use transformer-based models given their
reliance on large-scale training data. We address
this challenge by developing a pretraining approach
(based on (Majumdar et al., 2020)) that yields an
effective visuolinguistic representation.
Contributions: To summarize:

1. We demonstrate an LED approach using navi-
gation graphs to represent the environment.

2. We present LED-Bert, a visiolinguistic trans-
former model which scores alignment be-
tween graph nodes and dialogs, and we de-
velop an effective pretraining strategy.

3. We show that LED-Bert outperforms all base-
lines, increasing accuracy at 0m by 8.21 abso-



lute percent on the test split.

2 Related Work
ViLBERT ViLBERT (Lu et al., 2019) is a multi-
modal transformer that extends the BERT archi-
tecture (Devlin et al., 2018) to learn joint visio-
linguistic representations. Similar multi-modal
transformer models exist (Li et al., 2020, 2019;
Su et al., 2019; Tan and Bansal, 2019; Zhou et al.,
2020). ViLBERT is constructed of two transformer
encoding streams, one for visual inputs and one
for text inputs. Both of these streams use the stan-
dard BERT-BASE (Devlin et al., 2018) backbone.
The input for the text stream is then text tokens,
identical to BERT. The visual tokens for the visual
stream are a sequence of image regions which are
generated by an object detector pretrained on Vi-
sual Genome. The input to ViLBERT is then a
sequence of visual and textual tokens which are
not concatenated and only enter their respective
streams. The two streams then interact using co-
attention layers which are implemented by swap-
ping the key and value matrices between the visual
and textual encoder streams for certain layers. Co-
attention layers are used to attend to one modality
via a conditioning on the other modality, thus al-
lowing for attention over image regions given the
corresponding text input and vise versa.

Vision-and-Language Pre-training Prior work
has experimented with utilizing dual-stream trans-
former based models that have been pretrained with
self-supervised objectives and transferring them to
downstream multi-modal tasks with large success.
This has been seen for tasks such as Visual Ques-
tion Answering (Antol et al., 2015), Commonsense
Reasoning (Zellers et al., 2019), Natural Language
Visual Reasoning (Suhr et al., 2018), Image-Text
Retrieval (Lee et al., 2018), and Visual-Dialog (Mu-
rahari et al., 2020) and Vision Language Navigation
(Majumdar et al., 2020). Specifically VLN-Bert
and VisDial + BERT adapt the ViLBERT architec-
ture and utilize a pretraining scheme which inspired
our approach to training LED-Bert.

3 Approach

3.1 Environment Representation

A key challenge in the LED task is that environ-
ments often have multiple rooms with extremely
similar attributes, i.e. multiple bedrooms with the
same furniture. Therefore a successful model must
be able to visually ground fine-grained attributes.

Strong generalizability is also required in order to
generalize to unseen test environments. The LED
baseline in (Hahn et al., 2020) approaches localiza-
tion as a language-conditioned pixel-to-pixel pre-
diction task – producing a probability distribution
over positions in a top-down view of the environ-
ment, illustrated in Part A, in the Supplementary,
Figure 2. This choice is justified by the fact that
it mirrors the observations that human Locators
had access to during data collection, allowing for
a straightforward comparison. However, this does
not address the question of what representation is
optimal for localization.

We propose to use a navigation-graph map repre-
sentation derived from the panoramic-RGB graphs
of the Matterport environments (Chang et al.,
2017), illustrated in Part B, in the Supplementary,
Figure 2. The Observer agent traverses these same
navigation graphs during data collection, which
may result in a strong alignment between the dia-
log and the nodes. Using this approach, the LED
task can be framed as a prediction problem over the
possible nodes in the navigation graph. At infer-
ence time, this can be accomplished by producing
an alignment score between each node in the test
environment and the test dialog, and then returning
the node with the highest score as the predicted
observer location.

3.2 Adapting ViLBERT for LED

To formalize the graph based LED task, we con-
sider a function f that maps a node location n and
a dialog x to a compatibility score f(n, x). We
model f(n, x) using a visiolinguistic transformer-
based model we denote as LED-Bert, shown in
the Supplementary, Figure 1. The architecture
of LED-Bert is structurally similar to ViLBERT
and VLN-Bert (Majumdar et al., 2020), but with
some key differences due to our need to ground
dialog and fine-tune on the relatively small WAY
dataset. This allows us to initialize the majority of
the LED-Bert using pretrained weights. We rep-
resent each panoramic node I as a set of image
regions r1, ..., rk. Let an dialog x be a sequence of
tokens w1, ..., wL. Then for a given dialog-node
pair for LED-Bert as the input sequence:
⟨IMG⟩r1, ..., rK⟨CLS⟩w1, ..., wL⟨SEP⟩ where

IMG, CLS, and SEP are special tokens.
Transformer models are by nature invariant to

sequence order and they only model interactions be-
tween inputs as a function of their values (Vaswani



et al., 2017). This leads to the standard practice of
adding positional embeddings for each input token
to re-introduce order information. For the dialog
tokens we simply use an index sequence order en-
coding. However the panoramic node visual tokens
have a more complicated positional encoding, as
the panorama is broken up into image regions. The
visual positional information is very important for
encoding spatial relationships between objects and
for scene understanding as a whole. For instance
consider the a question the Locator might as ‘Are
you located to the right of the blue couch?’ This
question will require information about which part
of the panorama the couch is located in. To address
this, we follow the VLN-Bert (Majumdar et al.,
2020) strategy of encoding the spatial location of
each image region, in terms of its location in the
panorama (top-left and bottom-right corners in nor-
malized coordinates as well as area of the image
covered), its elevation relative to the horizon and
all angles are encoded as [cos(θ),sin(θ)]. The re-
sulting 11-dimensional vector S is projected into
2048 dimensions using a learned projection WS .

3.3 Training Procedure for LED-Bert

LED-Bert can be trained from scratch using the
WAY dataset however due to the small size ( 6k
episodes) of the WAY dataset and since large-
transformer models have been shown to work best
on large amounts of data we follow the 4 stage
pretraining procedure of prior work (Majumdar
et al., 2020; Murahari et al., 2020; Lu et al., 2019).
These works do extensive pretraining for multi-
modal transformers using large scale web-data.
The pipeline for pretraining has 4 stages and is
also visualized in the Supplementary, Figure 1.

Stage 1-3 are the same as (Majumdar et al.,
2020), and we replace the 4th stage with fine-tuning
for node localization over the WAY dataset. To
train LED-Bert for localization, we consider the
task as a selection task over the possible nodes
in the graph, on average there are 117.32 nodes,
with the largest environment containing 345 nodes.
We run LED-Bert on each node-dialog pair and
extract the final representations for each stream,
denoted as hCLS and hIMG, using these we com-
pute a compatibility score by doing element-wise
multiplication of the two vectors and passing them
through a single linear layer. The scores are nor-
malized via a softmax layer and then supervised
using a cross-entropy loss against a one-hot vector

with a mass at the ground truth node.

4 Experiments

4.1 Baselines

We propose strong baseline methods to compare
the LED-Bert architecture against. All approaches
will use the panoramic based maps to ensure the
same the prediction space of all panoramic nodes
in an environment.

Human Performance: Uses the average perfor-
mance of AMT Locator workers from the WAY
dataset. We snap the human prediction over the top
down map to the nearest node.

Random: Selects a random node from the test envi-
ronment as the predicted location for each episode.

Joint Embedding: This baseline learns a common
embedding space between the dialogs and corre-
sponding node locations. Each panoramic node is
represented by 36 image patches and image fea-
tures are extracted for each patch. Visual features
are extracted using a ResNet152 (He et al., 2016)
pretrained on Places 365 (Zhou et al., 2017). We
experiment with three types of joint embedding
architectures. All models encode the dialog in the
same way and is described below.

Graph Convolutional Network Both the joint-
embedding baselines and LED-Bert discard edge
information. We propose to experiment with Graph
Convolutional Network (GCN) (Zhang et al., 2019)
to model the LED task using the navigation graph
as input which incorporates edge information. In
the graph representation input to the model, nodes
attributes are visual features and edge attributes
contain the pose transformation between connected
nodes. The goal of the GCN architecture is to
model the relational information between the nodes
of the graph and the localization dialog in order to
produce a probability distribution of localization
likelihood over the nodes.

Dialog Encoding: The Locator and Observer mes-
sages are tokenized using a standard toolkit (Loper
and Bird, 2002). The dialog is represented as a
single sequence with identical ‘start’ and ‘stop’ to-
kens surrounding each message, and then encoded
using a single-layer bidirectional LSTM. Word em-
beddings are initialized using GloVe (Pennington
et al., 2014) and fine tuned end-to-end. In the first
model called the ‘late-fusion model’, the LSTM
has a 2048 dimension hidden state and the node
features are down-sampled using self attention to



Table 1: Comparison of the LED-BERT model with baselines and human performance on the LED task. We report
average localization error (LE) and accuracy at k meters (all ± standard error).

val-seen val-unseen test

Method LE ↓ Acc@0m ↑ Acc@5m ↑ LE ↓ Acc@0m ↑ Acc@5m ↑ LE ↓ Acc@0m ↑ Acc@5m ↑

Human Locator 6.00 47.87 77.38 3.20 56.13 83.42 5.89 44.92 75.00

Random Node 20.8 0.33 10.82 18.61 1.9 11.05 20.93 0.92 11.00
Late Fusion 12.56 17.38 47.54 12.87 7.77 34.37 15.86 8.92 32.75
Attention Model 9.83 18.36 56.07 10.93 10.54 41.11 14.96 6.92 34.42
Attention over History Model 11.64 21.64 49.18 11.44 10.02 43.18 14.98 7.14 33.68
Graph Convolutional Network 10.95 19.67 59.13 9.10 8.64 46.99 14.32 9.46 35.10

LED-BERT 9.04 25.57 60.66 8.82 21.07 52.5 11.12 17.67 51.67

be of size 2048, the visual and dialog features are
fused through late fusion passed through a two-
layer MLP and softmax and the output is a predic-
tion over the possible nodes in the environment. In
the ‘attention model’, the visual and dialog features
are fused instead through top-down bottom up at-
tention, the final layers of the model are also an
MLP and softmax. In the ‘attention over history
model’, there are two separate LSTMs. One to
encode dialog history and another to encode the
current message. The dialog history based atten-
tion is applied over the visual features, then the
encoded current message and visual features are
fused through late fusion followed by an MLP and
softmax.

4.2 Metrics

We propose to evaluate the localization error (LE)
of our models using geodesic distance instead of
euclidean distance as used in (Hahn et al., 2020).
Geodesic distance is more meaningful than eu-
clidean distance for determining error across rooms
and across floors in multi-story environments. To
discern the precision of the models, we report a
binary success metric that places a threshold k on
the LE. Accuracy (Acc) at 0 meters indicates the
correct node was predicted. Accuracy at k meters
indicates that the node predicted was within k me-
ters of the true node.
4.3 Results

Table 1 shows the performance of our LED-BERT
model and relevant baselines on the val-seen, val-
unseen, and test splits of the WAY dataset.

Human and No-learning Baselines. Humans suc-
ceed 44.92% of the time in test environments at 0
meters, this shows it is a difficult task.

Attention and History increase performance.
Adding bottom-up and top-down attention in-
creases performance, additionally separating the

encoders for the current message from the dialog
history further increases performance.

Graph Networks see slight improvement. Graph
networks see slight increase in performance on the
test split. Graph networks do not have a straight
forward large-scale web-data pretraining schema
for this task.

LED-BERT outperforms all baselines. LED-
BERT significantly outperforms the other cross-
modal modeling baselines in terms of both accu-
racy and localization error – improving the best
baseline, Graph Convolutional Network (GCN),
by an absolute 7.54% (test) to 12.43% (val-seen
and val-unseen). There remains a gap between
our model and human performance – especially on
novel environments (-% vs -% on test).

5 Conclusion

In summary, we propose a viso-linguistic trans-
former, LED-BERT, for the LED task and instan-
tiate a new version approach which does localiza-
tion over the navigation graph. We demonstrate a
pre-training schema for LED-BERT which utilizes
large scale web-data as well as other multi-modal
embodied AI task data to learn the visual ground-
ing required for successful localization’s in LED.
We show LED-BERT is able to achieve SOTA per-
formance and outperform other learned baselines
by a significant margin.

6 Supplementary

6.1 Training Procedure for LED-Bert
LED-Bert can be trained from scratch using the
WAY dataset however due to the small size ( 6k
episodes) of the WAY dataset and since large-
transformer models have been shown to work best
on large amounts of data we follow the 4 stage
pretraining procedure of prior work (Majumdar
et al., 2020; Murahari et al., 2020; Lu et al., 2019).



These works do extensive pretraining for multi-
modal transformers using large scale web-data.
The pipeline for pretraining has 4 stages and is
also visualized in Figure 1.

6.2 Environment Representation
The LED baseline in (Hahn et al., 2020) approaches
localization as a language-conditioned pixel-to-
pixel prediction task – producing a probability dis-
tribution over positions in a top-down view of the
environment, illustrated in Part A, Figure 2. In this
paper we used a navigation-graph map representa-
tion derived from the panoramic-RGB graphs of
the Matterport environments (Chang et al., 2017),
illustrated in Part B, Figure 2
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Figure 1: We propose the LED-BERT for the LED task. The model is pretrained in 3 stages over different datasets
before being fine-tuned over the node-dialog pairs of the WAY dataset (Hahn et al., 2020). The language stream of
the model is first pretrained on English Wikipedia and the BooksCorpus (Zhu et al., 2015) datasets. Second, both
streams of the model are trained on the Conceptual Captions (Sharma et al., 2018) dataset. Third, both streams are
train on the path-instruction pairs of the Room2Room dataset (Anderson et al., 2018b). Finally we fine-tune the
model over the node-dialog pairs of the WAY dataset (Hahn et al., 2020).
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Figure 2: Examples of the types of map representations of the Matterport3D (Chang et al., 2017) indoor environments
which can be used for the Localization via Embodied Dialogue task. Part A shows the top down floor maps used in
the original LED paper. Part B shows an overlay of the navigation graph of panoramic nodes over the top down map,
note the lines represent traversability between nodes and the circles represent the panoramic node location. Part C
shows examples of the FPV panoramic nodes in different environments. Note each of these images are mapped to a
node in a connectivity graph for the respective environment.


