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ABSTRACT
We introduce a novel interface for large scale collection of human
memory and assistance. Using the 3D Matterport simulator we
create a realistic indoor environments in which we have people per-
form specific embodied memory tasks that mimic household daily
activities. This interface was then deployed on Amazon Mechanical
Turk allowing us to test and record human memory, navigation and
needs for assistance at a large scale that was previously impossible.
Using the interface we collect the ‘The Visually Grounded Memory
Assistant Dataset’ which is aimed at developing our understand-
ing of (1) the information people encode during navigation of 3D
environments and (2) conditions under which people ask for mem-
ory assistance. Additionally we experiment with with predicting
when people will ask for assistance using models trained on hand-
selected visual and semantic features. This provides an opportunity
to build stronger ties between the machine-learning and cognitive-
science communities through learned models of human perception,
memory, and cognition.
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1 INTRODUCTION
Automated interaction with humans in everyday activity remains a
significant challenge for artificial intelligence (AI). Current interac-
tive systems take many forms and operate on different time scales;
examples include shopping recommendations, conversational AI,
autonomous vehicles, and social robots. These models typically
only work within a narrow range of conditions. For example, while
autonomous vehicles can interact effectively with other drivers in
highway conditions, they are not yet ready for city streets where
environments are less predictable. An even more significant chal-
lenge is presented by the prospect of all-day wearable augmented
reality (AR) glasses: the ideal is an automated system that that can
offer assistance in any context. Unlike existing mobile devices, AR
wearable glasses could have access to information from the internet
and detailed information about local physical context, including
user actions from a first person viewpoint. Simultaneous access
to both sources of information opens new opportunities and chal-
lenges for the development of collaborative human–AI systems.
The AI required for such a system would likely require “theory of
mind” similar to that of humans, whereby people infer goals and
cognitive states of others and take strategic, context-dependent
actions that may be cooperative or adversarial in nature.
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Here we present a dataset aimed at providing insight into the
conditions where people request assistance to recall facts about the
local environment. We focus on memory because enhancing human
memory is one of the primary uses of computing technology. Our
data provides insight into (1) the kind of features people encode
during navigation, (2) the difficulty of different types of questions,
and (3) conditions under which people will ask for assistance.

To gain insight into the kind of local assistance people would like
to receive, we gave participants exposure to a 3D environment (a
"fly-through" of a Matterport3D environment [7]). They were then
asked questions about the environment, as illustrated in Figure 1.
For each question, participants could either (1) answer the question
immediately, (2) navigate back to the location where the answer
could be discerned, or (3) pay for an assistant to bring them back
to that location.

I can’t remember 
how to get to 
the bedroom

Okay I’ll help 
you navigate 

there

Figure 1: Conceptual depiction of the studywith 3D environ-
ment, option for requesting assistance and human-assistant
interaction.

In this paper, we present summary statistics and results of models
(which employ hand-selected features) that predict whether partici-
pants will ask for assistance. The features used in these models were
selected based primarily on intuition. Ultimately, we aim to for-
mulate models of human perceptual and memory systems that are
based on established computational models of human perception
and cognition (e.g., [8, 20]). We hypothesize that this knowledge
will help address a core challenge of developing accurate priors for
when people will ask for assistance in memory and navigation tasks.
Such priors provide a foundation for more generalizable models and
inferring model parameters from less data (i.e., low-shot learning).



In summary, our main contributions are as follows:
(1) We introduce the Memory Question Answering (MemQA) task

for humans, which tests human visual spatial memory. We cre-
ated the Visually Grounded Memory Assistant Dataset, which
contains over 6k instances of humans preforming the MemQA
task. To the best of our knowledge, this is the largest dataset
on visually-grounded memory assistance for humans.

(2) We perform in-depth analysis of conditions under which hu-
mans ask for assistance.

(3) We develop baseline models for the task of predicting whether
participants will ask for assistance or navigate on their own as
well as their accuracy on answering the MemQA questions.

2 RELATEDWORK
2.1 Research and models of human memory
Human memory is often classified based on the length of storage
(sensory, short, and long term) and the ability to communicate the
contents of memory. While contents of declarative memory can be
stated explicitly, procedural or perceptual-motor skills cannot be
so stated [3]. Declarative memory is often further classified into
episodic (life events) and semantic (language and symbol-based
knowledge). In addition to this classification scheme, computa-
tional theory has led to the development of process models for
the encoding, storage, and retrieval of memories. These models,
typically built on the basis of association networks, blur the lines
in the typology and capture important patterns in data [16, 17]. In
particular, the encoding and recall of memories is highly depen-
dent on spatio-temporal context and the memory networks built
with this structure seem to associate representations across the
memory typology described above. For example, people can often
report the context in which they learned to tie their shoe (proce-
dural and episodic memory) and shoe brands are likely faster to
recall when a person is tying their shoe than when they zipping up
their jacket (indicating context specific effects of procedural and
semantic memory).

The complexity of these association networks has, historically,
been difficult to study in detail due to methodological limitations. In
particular, studyingmemory at scale and in real-world, visually-rich
contexts is a significant challenge. By collecting data on visual mem-
ory tasks at scale on Amazon Mechanical Turk (AMT) in complex
3D environments, our data set provide an important step toward
overcoming these limitations. AMT studies have also been used in
the past to study memorability of images [15, 19]. However, these
studies focus on purely visual features underlying memorability
and do not account for context-driven or task-driven visual memory
encoding.

The most relevant cognitive-science research for our task focuses
on how people learn to navigate environments. People build and
store mental maps that allow for more efficient navigation on future
visits to that location. Thesemaps are built frommixtures of sensory
cues that include landmarks, optical flow as well as non-visual
cues [13, 14, 32]. What features are used and how they are encoded
is not fully understood [6, 10, 18]. Our data provide a rich source of
information to develop our understanding of what visual features
are encoded and stored in human spatial maps. Understanding
what features are used by humans may enable the development

of better navigation systems in mechanical autonomous agents.
Such agents are now being developed in a research program on
embodied question answering (EQA) [11, 30, 31] which was the
primary machine-learning inspiration for the present study.

2.2 Embodied Perception and Question
Answering

Recently, the computer-perception community has opened a new
field of embodied perception where agents learn to perform tasks in
3D simulated environments in an end-to-endmanner from raw pixel
data. These tasks include target-driven navigation [33], instruction-
based visual navigation [2], and embodied and interactive question
answering (EQA) [11, 30, 31]. In a typical EQA task set up, an agent
is spawned in a random location of a novel building and asked
a question about an object or room such as “What color is the
car?”. The agent has no prior knowledge or representation of the
building or objects and it must navigate to find the object and
then answer the question correctly. This task involves learning
a robust navigational system and an accurate visual inference to
answer the question. This task was designed as a good measure
of an agent’s ability to preform visually grounded navigation and
semantic understanding of the environment. We hypothesize that
observing humans in the EQA task will lend insight into human
spatial memory and semantic understanding of the environment.
To this end, we expanded the EQA dataset to include five types of
questions: location, existence, color, count, and comparison. We
then use the new EQA questions to create a new task for humans
called Memory Question Answering (MemQA). In the MemQA
task, participants are given a short video of a fly through of an
environment and are then asked to solve multiple EQA questions
about that environment within a time constraint.

Apart from enabling the study of how humans perform naviga-
tion tasks and encode spatio-temporal information, our task also
allows humans to ask for assistance when needed. Recent research
in embodied and autonomous agents has also explored the utility
of seeking assistance [22, 23]. Nguyen and Daumé III developed
a navigation task where agents could ask for natural language
assistance [22]. Their goal was to develop mobile agents that can
leverage help from humans potentially to accomplish more complex
tasks than the agents could entirely on their own. They also ex-
plored using a cost to for each request for assistance. Their goal was
to try and learn the optimal policy for requesting assistance with a
limited budget of requests. They did not gather human assistance
dialogue but instead supplemented the assistance with the instruc-
tions from the Room2Room task [2]. Unlike this work, our focus
is on understanding when humans might seek assistance in tasks
that require visual memory encoding. The ability to understand
when a user has forgotten something about the local environment
and thereby might need assistance would be crucial for the next
generation of contextual, personal assistants.

2.3 Automated interaction and AI Assistance
Research in human–robot interaction and simulations of human–AI
cooperative systems has helped identify and make progress toward
some of the major challenges in automated interaction systems. As
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noted above, our data provide a foundation for models that bet-
ter predict what information people encode and remember during
navigation. Under the assumption that humans use informative
features to learn spatial maps, identifying and using these features
to train autonomous AI agents is likely to lead to more efficient
learning than learning from raw pixels. Some research toward this
goal has used simulated human agents to answer questions from
an autonomous agent to help it learn to navigate [22, 23]. A lim-
itation of using simulated human agents is that AI–AI learning
does not necessarily translate into improved human–AI perfor-
mance [9], a fact that has been starkly revealed in the development
of autonomous vehicles [27, 28]. This brings us to the second appli-
cations of research from our data set: The development of effective
AI assistance using first-person camera data.

By understanding perceptual features that humans use to per-
form a task (i.e., a ‘theory of mind’ for human perception and
memory in our case), an automated assistant will be able to bet-
ter identify when and how to intervene with assistance. Recent
studies where the AI agent has third-party observation have demon-
strated that this ‘theory of mind’ approach with the assumption
that humans will act rationally to achieve a goal, has advantages
for the development of human–AI collaboration [4, 21]. When the
agent has first-person video, this approach lays the foundation for
understanding what features of the environment and what task
a person is likely to attend to (see [5, 25] for recent reviews of
computer-vision approaches to action understanding from first-
person video). A machine-based representation space that is better
aligned with human perceptual and memory representations al-
lows for better grounded interaction and communication between
the human and AI agents. We hypothesize that identifying this
common representation space will lead to better generalization of
models for visually grounded assistance. We further envision that
our data would provide a foundation for testing current models
of human perception and memory from cognitive science. If such
models are predictive, they can and should be incorporated into a
‘human-like’ representation for visually-grounded AI assistants.

3 THE VISUAL ASSISTANCE DATASET
We now describe the Memory Question Answering task and the
data set collection protocol for the Visually Grounded Assistant
(VGA) Dataset. To re-iterate, the goals of our dataset collection
were (1) to provide a basis for the development of an agent that
can predict when a person is likely to request assistance and (2) to
develop and test models of human visual and spatial memory.

3.1 Task Description
Task for Human We refer to the task for the human participants
as Memory Question Answering with Navigation (MemQA). Please
refer the video∗ to see a demonstration of the MemQA task, where
the assistant is an oracle that can be used to help answer questions
about the environment. The task was encapsulated in the 3D simu-
lated indoor environments from the Matterport3D dataset [7] and
was run on Amazon Mechanical Turk. The Matterport3D dataset
has been used in many embodied perception tasks [2, 24, 30] and
thus our data from humans complements existing data from AI
∗https://www.youtube.com/watch?v=T97r2leqFyQ

agents. Additionally we used the Matterport3D dataset because it
contains scans of real buildings with realistic settings which range
from offices to houses. The setup of our data collection interface is a
simulation which uses the actual RBG panoramic frames of the en-
vironment. This removes any negative impact that reconstruction
errors or unrealistic looking scenes could have on a participants
memory.

In each trial, the participant is exposed to a fly through of an in-
door 3D simulated building as depicted in Figure 2. This fly through
is on average a little longer than 70 seconds. After the fly through,
the participant is teleported back to the starting point and is pre-
sented with four questions. The questions are always about objects
and rooms which were passed during the fly through. The questions
can concern the location, color, count, and existence of objects, as
well as room comparisons and object comparisons (see Section 3.2
and Table 1 for more examples and details about the questions).
Participants are allotted a total of 2.5 minutes to answer all four
questions. They can take three distinct approaches to answer a
question: (1) answer immediately without any form of navigation,
(2) navigate through the environment themselves (presumably to
return to the location where the answer could be discerned), or (3)
request assistance, in which case an assistant would transport them
to the location from which the answer could be discerned. Selecting
the third option carried a time cost of 10(+) seconds, which was
subtracted from the time limit. The exact cost of each request for
assistance was a function of total distance the assistant would have
to navigate them. When the participant requested assistance they
would specify which question they wanted assistance with and if it
was a multi location question such as object comparison they could
select which object they wanted to be navigated to. For example
for the question “were the stove and the bathtub the same color?”
the participant would have to choose whether they wanted to be
assisted with finding the bathtub or the stove. In order to incentivise
the importance of answering correctly, the participant is given a
monetary bonus for each correct answer.

Task for Assistant The main goal of the assistant is to work
collaboratively with the human to answer the questions. The agent
needs to be able to understand the humans behavior so that it can
realize when the human needs and wants help while not being
overly intrusive. To do this the agent needs to model an an accurate
representation of what a human has encoded during the fly through
and to predict the humans behavior during the question answering
phase. The assistant agent is set to act as an oracle for the building
and is allowed access to the annotated 3D mesh as well as the
questions the human is answering. This dataset creates multiple
interesting tasks for an assistant agent. The tasks we propose are
most useful to realization of an AR assistant are:

(1) Take in the fly-through and a single question. Predict: cor-
rectness, navigation behavior, assistance request behavior.

(2) Take in the fly-through, all four questions and the sequence
of frames during the answering phase. At each time step of
the answering phase predict behavior: navigation, request
for assistance, answer selection or nothing
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In Section 5 we define a method for the first task and give some
insight of methodologies and metrics for solving and evaluating
the second task.

3.2 Dataset Collection
Simulators
The Matterport3D dataset [7] includes over 10k panoramic RGB-D
images over 90 real indoor buildings. These panoramic nodes are
distributed on average 2.25 meters apart across the entire building.
The Matterport simulator [2] creates an interactive and navigable
environment for the Matterport3D dataset. We used the Habitat
simulator [29] to extract additional information, such as semantic
segmentation of the mesh.

Question and Fly through Creation
Following the methodology from [11], we generated the questions
programmatically using the Matterport3D meshes and annotations.
Each question was represented as a functional template as shown
in Table 1. Each template defines the query-able rooms or objects.
The original EQA dataset on Matterport3D contained the question
types indicated by the ∗ superscript. To obtain a more diverse
and representative question set, we added existence, count, and
comparison questions. These questions provide additional data to
determine how difficult different features of the environment are
for people to encode and remember. In order to ensure consistency
of answers, participants selected the answer from a drop down
menu of all possible answers. The random chance accuracy for all
questions in the dataset is 29.08%.

After the initial question generation, we discovered many errors
in the Matterport3D annotations. To eliminate erroneous annota-
tions, we ran a crowd-sourced study to verify annotation accuracy.
Table 1, lists the number of original generated questions, the num-
ber that were filtered by the verification study and the remaining
number of questions. This study resulted in the necessary filtering
of 20% of the generated questions.

We generated the fly-through paths to ensure that they included
the visual information needed to answer the questions with a
minimum-distance criteria. The fly-through paths were generated
after filtering and generating the questions. To generate each fly
through, we first randomly sampled, without replacement, 4 ques-
tions about different objects from the same environment. We then
computed the shortest path through the environment that visited
each required location. A short random trajectory was added to the
start and end of the path. For purposes of consistency, fly throughs
under 45 seconds or over 75 seconds were discarded.

4 VISUAL ASSISTANCE DATASET ANALYSIS
General Statistics
We collected ≥ 5 annotations for 1250 unique MemQA tasks with a
total of 6275 annotations. Note that each MemQA task consists of a
single fly through and four questions as described in Section 3.1.
Table 2 shows some basic statistics of the task and data collected.

While the average time taken on the task was 74.96 seconds, on
9.68% of annotations a participant reached the time limit. This al-
most always occurred on annotations where participants requested
assistance. This shows that the time limit acts as an effective way of

budgeting the total number of assistance requests thus disallowing
participants from completely relying on the assistant.

The differences in question difficulty is coarsely exposed through
Figure 4 that shows the proportion of requests for assistance and
Figure 5 that shows accuracy by question type. The fewest number
of requests came for room count and nonexistence questions. While
this suggests that these questions were the easiest to answer, the
latter fact likely reflects the fact that people recognized that they
would not gain any information by being brought to the absence of
an object. Comparison questions also had few requests. This could
reflect either difficulty level or a lack of willingness to spend the
time required to go to multiple locations to answer the question.
This is where our dataset provides opportunity to examine trade-
offs between the time/effort it would take to find out the right
answer and risking a guess to save that time. The most assistance
was requested for room in color and object count suggesting these
were difficult questions. Similar trends are observed in the accuracy
data, which we examine next.

The left panel of Figure 5 shows accuracy of all answers (with
or without assistance) and the right panel shows accuracy only for
questions when the participant neither asked for assistance nor
navigated to the location to obtain the answer. The right panel
reveals clearly that room count and object existence questions
were the easiest for people to remember. Interestingly, there is a
substantial difference between their ability to answer existence and
non-existence questions. This may reflect participants’ recognition
that there is a good chance that they missed something that was
present in the environment, making it more likely that they will
guess it exists when, in fact, it doesn’t exist.

Finally, we wanted to see if the distance to the target location
effected choices to navigate or get assistance. Figure 6 shows the
distribution of distances to all targets (1) from the starting point, (2)
for questions that were answered without navigation or assistance,
(3) for cases where participants navigated to the target and (4) for
cases where assistance was requested. While there are long tails
in each of these distributions, the cases where people navigated to
the target is the only distribution with a clear mode at the shortest
distance. This suggests that participants were reluctant to navigate
to targets when travel distance was long. To further examine the
effect of distance, we included ‘time of first exposure’, which is
correlated with distance, as a feature in the models we present in
the next section.

5 BASELINES AND METHODS
We explore modeling the first task described in Section 3.1: given
the fly through and question, predict whether a participant will be
able to answer the question correctly, and whether they will answer
the question (1) without any form of navigation, (2) by navigating
on their own, or (3) by requesting assistance. We adopt a modeling
approach that consists of constructing four binary classification
problems: one for answer correctness, and one corresponding to
each of the three answer-strategy approaches mentioned above.
While we could construct a single 3-class classifier to predict the
participant’s strategy, a collection of binary classifiers enables more
nuanced study of which outcomes are easiest to predict; for example,
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Question: What color 
were the chairs in 
the lobby?...

Answer: Green

Figure 2: Frames from a fly through and visual question from the MemQA task. These panoramic RGB images of a Matter-
port3D building were rendered using the Matterport Simulator.

Table 1: MemQA question types and templates. The ∗superscript denotes question types that were included in the original
Matterport EQA [30].

Question Type # Generated # After Filtering Template
∗location 203 116 What room is the <OBJ> located in?
∗color 299 188 What color is the <OBJ>?

∗color inroom 1432 943 What color is the <OBJ> in the <ROOM>?
existence 283 207 Is there a <OBJ> in the <ROOM>?

count object 2729 2463 How many <OBJS> in the <ROOM>?
count room 340 299 How many <ROOMS> in the house?

color compare inroom 320 288 Does <OBJ1> share same color as <OBJ2> in <ROOM>?
color compare xroom 86 70 Does <OBJ1> in <ROOM1> share same color as <OBJ2> in <ROOM2>?
object size inroom 300 272 Is <OBJ1> bigger/smaller than <OBJ2> in <ROOM>?
object size xroom 260 212 Is <OBJ1> in <ROOM1> bigger/smaller than <OBJ2> in <ROOM2>?
room size compare 1048 932 Is <ROOM1> bigger/smaller than <ROOM2> in the house?

Figure 3: Distribution of the question topics: Each question
type is generated from a template and query-able objects
and rooms. The graphs show the distribution of query-able
objects and rooms we used to generate questions. These dis-
tributions of questions were obtained after filtering out the
questions that included erroneous annotations in the Mat-
terport3D data set.

Table 2: VGA Dataset: General Statistics

Avg. length of fly through (seconds) 71.45s
Avg. time taken on task (seconds) 74.96s
Percent of annotations that reached the time limit 9.68%
Num. of unique workers 412
Avg. participant accuracy 70.34%
Random Chance accuracy 29.08%
Percent of annotations that used assistance 58.34%
Percent of questions with assistance requests 25.23%

Figure 4: Distribution of Assistance Requests by Question
Type: The frequency of requests for assistance is a good in-
dicator of question difficulty.

5



Figure 5: Accuracy by Question Type: The left panel shows
the accuracy for each question type for the entire data set.
The right panel shows accuracy for questions that were an-
swered without assistance or navigation.

we can generate a receiver operating characteristic (ROC) curve
for the classifier associated with the prediction of each outcome.

The goal of this study is to model human visual and spatial
memory. The participant is always exposed to the correct answer
of a question during the fly through. Whether the participant is
able to answer the question after completing the fly through is a
direct measure of their ability to encode and recall the relevant
feature of the environment. Additionally, the participant’s ability
to navigate back to the location of the answer is informed by their
spatial memory. Visually encoding all of the information into mem-
ory is outside the bounds of human memory ability. What features
actually get encoded will depend on many factors such as object
saliency and the duration of the fly through. By modeling the par-
ticipants’ performance based on the fly through alone, we seek to
determine the most important factors in determining performance.
For the initial model, we did not consider question types that dealt
with multiple objects. This is, we omitted comparison and count
questions, resulting in five remaining question types.

Let us call primary object of the question o1. We started by
characterizing each question with the following (hand-selected)
features:

(1) Type of question (discrete).
(2) Length of fly through (continuous).
(3) Time of first exposure to o1 (continuous).
(4) The temporal exposure of o1.
(5) The spatial exposure of o1 (continuous).
(6) Word embedding of object type of o1 (continuous).
Features 3, 4, and 5 were drawn from the Habitat simulator over

the frames of the fly. Using the instance and semantic segmenta-
tion over each frame, the object information from each view was
extracted (Figure 7). To obtain a measure of exposure of objects, it
was necessary to consider exposure both in temporal and spatial
terms. Temporal exposure refers to the length of time the object
was in view and spatial exposure refers to the amount of area the
object occupied throughout the fly through. The spatial exposure
is defined as the total of number of pixels of o1 across all frames of
the fly through.

5.1 Model Description
As mentioned above, we used these features to train four binary
classifiers. We now describe the features and classification models
we consider:

Figure 6: Distribution of Distance to Target under different
condition: The distance in meters from the participant to
the location answer. Illustrates the location conditions un-
der which participants ask for assistance.

Features. We employ 10 features in the models: the features 1–5
above, as well as a 5-dimensional embedding of the object type
derived from feature 6 above; note that the dimension of the em-
bedding space is a hyperparameter, which we set to five to keep the
number of features relatively small. To compute this 5-dimensional
embedding, we (1) compute the GloVe embedding [26] of all 35
unique object types into a 50-dimensional latent space, (2) apply
principal component analysis (PCA) [1] and project the embeddings
onto the 5-dimensional linear subspace of this 50-dimensional latent
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(a) Panoramic RGB (b) Reconstruction RGB

(c) Instance Segmentation (d) Semantic Segmentation

Figure 7: Example of four frames types for the same camera
view point. (a) is an example of the view that participants
had in the MemQA task. (b) shows the Habitat Simulator re-
construction from the environmentmesh. Themesh and it’s
annotations were used to construct the MemQA questions
as well as to create the features for modeling accuracy and
assistance requests. The (c) and (d) show segmentation as an-
notated by the environment mesh.

space spanned by the first five principal components, and (3) treat
the resulting five PCA coordinates of the object type as features.

Classification models. We consider three different classification
models as implemented in Scikit-learn:

(1) Random-forest (RF) classifier. We employ an ensemble
of 10 trees and we use the Gini impurity measure in tree
construction; all remaining parameters correspond to the
default values in Scikit-learn.

(2) Multilayer-perceptron (MLP) classifier (i.e., feedforward,
fully connected neural network). We employ one hidden
layer with 100 neurons, ReLU activations, and the Adam op-
timizer; all remaining parameters correspond to the default
values in Scikit-learn.

(3) Support-vector-machine (SVM) classifier. We employ a
radial-basis-function kernel with coefficientγ = 2 and penalty
parameter of C = 1; all remaining parameters correspond to
the default values in Scikit-learn.

Models are trained using 80% of the data, and are tested on the
remaining 20%. We ensure that the training and testing sets contain
different questions, such that results on the test set assess general-
ization of the models across both participants and questions.

5.2 Results
Figure 8 reports the receiver operating characteristic (ROC) curves
for each of the candidate classification models on each of the four
binary prediction tasks computed on the test set, with Table 3
reporting the associated area under the curve (AUC).

These results demonstrate that—using the ten features specified
above—the models are best able to discriminate whether the partic-
ipant correctly answered the question; the MLP classifier achieved
an AUC–ROC value of 0.67 in this case. The models’ next best

(a) ROC curves for models pre-
dicting if the participant an-
swered the questionwithout any
form of navigation

(b) ROC curves for models pre-
dicting if the participant an-
swered the question by navigat-
ing on their own

(c) ROC curves for models pre-
dicting if the participant an-
swered the question by request-
ing assistance

(d) ROC curves for models pre-
dicting if the participant an-
swered the question correctly

Figure 8: ROC curves for the four types of predictions and
three considered classification models

Response RF MLP SVM

no navigation 0.53 0.57 0.53
self navigation 0.50 0.51 0.50
assistance 0.57 0.59 0.52
answered correctly 0.62 0.67 0.63

Table 3: AUC–ROC values for the candidate classifiers and
prediction tasks (RF: random forest; MLP: multilayer per-
ceptron; SVM: support vector machine)

performance occurs for predicting either the participants’ ability
to answer with no navigation or with assistance; the MLP classifier
achieved AUC–ROC values of 0.57 and 0.59, respectively, in these
cases. None of the models performed better than chance in pre-
dicting whether the participant employed self-guided navigation
to answer the question. Note that currently, none of our features
capture the spatial mapping of the environment or the complex-
ity of the fly through path, both of which might be important for
predicting whether the users would employ self-navigation. Apart
from developing more sophisticated models, we also plan to explore
human perception and cognition inspired features in the future.
For instance, object saliency has been found to be important for
recalling the object [12]. Likewise, landmarks, optical flow, and
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(a) Variable importance for “as-
sistance”

(b) Variable importance for “an-
swered correctly”

Figure 9: Variable importance generated by the random-
forest classifier for two responses.

other non-visual cues have been found to be important for naviga-
tion [13, 14, 32].

We now turn to the question of which features are most impor-
tant for determining the above outcomes. For this purpose, Figure 9
reports the feature importances arising from the random-forest clas-
sifier for responses corresponding to “assistance” and “answered
correctly”; we note that the importances for “no navigation” and
“self navigation” are nearly identical to the former. These figures
demonstrate that the most important features driving the construc-
tion of the decision trees correspond to (1) the total number of time
steps in the fly through, (2) the time step at which the object is
exposed, and (3) the spatial exposure of the object. Interestingly,
the semantic meaning of the objects—as represented by the word
embeddings—are characterized by low variable importance; the
question type also is relatively unimportant.

6 DISCUSSION
The primary purpose of this paper was to introduce a new data
set. The data provide an opportunity to develop models of human
visually-grounded memory that can serve as a basis for an auto-
mated memory assistant. The assistant in our task was an oracle
that only responds when called for. However, the simple model
we presented above demonstrates promise of developing a model
from a richer feature set that can predict when assistance is needed
without an explicit request. In addition to the opportunity to de-
velop machine representations that align with human perceptual
and memory systems, our data offer an opportunity to examine
how people trade off the cost of time to obtain the right answer
with the risk of getting the wrong answer (and, hence, not receiving
the monetary reward). This could provide a rich avenue for gain-
ing insight into how people value the travel time associated with
obtaining the right answer, money, and risk (i.e. the probability
of being wrong when guessing an answer without confirmation).
Similar situations arise, for example, when people travel to different
shops for items at lower prices than the store they are in.

7 CONCLUSION
The primary aim of this paper was to introduce the ‘The Visually
Grounded Memory Assistant Dataset’. The summary statistics and
baseline model demonstrate the potential of using these data to
develop models that can predict when people will ask for visual
and spatial memory assistance.

Our dataset creates a rich set of tasks to explore including pre-
dicting human performance, behavior and memory. We explored
modeling predicting human performance on the MemQA task from
what participants were visually exposed to in the fly through as
well as the context of the task they were solving. Future work can
explore looking at their behavior during the question answering
phase and model predictions from raw pixels.
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